Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.149
Filtrar
1.
Planta ; 259(5): 111, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578466

RESUMO

MAIN CONCLUSION: The combined photoinhibitory and PSII-reaction centre quenching against light stress is an important mechanism that allows the green macroalga Ulva rigida to proliferate and form green tides in coastal ecosystems. Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8-44.7 µM) and light intensities (50-1100 µmol photons m-2 s-1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12-20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.


Assuntos
Clorófitas , 60578 , Alga Marinha , Ulva , Ecossistema , Nitratos , Espécies Reativas de Oxigênio , Nitrogênio
2.
Toxics ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668477

RESUMO

Polyethylene (PE) is a common component of microplastic pollution, and cadmium (Cd) is a prevalent pollutant in contaminated freshwater bodies in China. Among cyanobacteria, Microcystis aeruginosa (M. aeruginosa) plays a crucial role in the formation of algal blooms in these water systems. However, there has been limited research on how microplastics and heavy metals affect cyanobacteria ecologically. This study aimed to evaluate the physiological effects of individual and combined exposure to Cd pollutants and microplastics on M. aeruginosa. The solutions containing 13 µm and 6.5 µm PE particles (100 mg/L) with Cd were used in the research. The results indicated that the combined treatment led to a significant inhibition of chlorophyll a content, dropping to zero by day 5. The treated groups exhibited higher microcystins (MCs) content compared to the control group, suggesting increased MCs release due to pollutant exposure. Interestingly, the adsorption of heavy metals by microplastics partially alleviated the toxicity of heavy metals on algal cells. Moreover, the combined treatment significantly suppressed catalase (CAT) activity compared to Cd treatment, indicating a synergistic effect that led to greater oxidative stress. Overall, this study provides valuable insights into the impact of PE and Cd pollution on freshwater ecosystems, elucidates the physiological responses of cyanobacteria to these pollutants, and establishes a theoretical groundwork for addressing complex water pollution using cyanobacteria-based strategies.

3.
Environ Sci Technol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639036

RESUMO

Validating paleo total phosphorus (TP) inference methods over long time scales is essential for understanding historic changes in lake P supply and the processes leading up to the present-day global lake eutrophication crisis. Monitored lake water TP time series have enabled us to identify the drivers of eutrophication over recent decades. However, over longer time scales, the lack of reliable TP inference means our understanding of drivers is speculative. Validation of lake water TP reconstruction, therefore, remains the "ultimate aim" of eutrophication studies. Here, we present the first critical comparison of two fully independent paleo TP inference approaches: the well-established diatom method (DI-TP) and a recently developed sediment geochemical method (SI-TP). Using lake sediment records from a small eutrophic U.K. lake (Crose Mere), we find a statistically significant agreement between the two inferred TP records with greater than 60% shared variance. Both records show identical timings, with a 19th century acceleration in TP concentration and subsequent declines following a peak in 1930. This significant agreement establishes the validity of long-term paleo TP inference for the first time. With this, we can now test assumptions and paradigms that underpin understanding of catchment P sources and pathways over longer time scales.

4.
Environ Sci Technol ; 58(16): 7045-7055, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587903

RESUMO

Despite decades of research and management efforts, eutrophication remains a persistent threat to inland waters. As nutrient pollution intensifies in the coming decades, the implications for aquatic greenhouse gas (GHG) emissions are poorly defined, particularly the responses of individual GHGs: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The biogeochemical controls of each gas can differ, making it difficult to predict the overall effect of nutrient pollution on the net radiative forcing of aquatic ecosystems. Here, we induced eutrophication of small nitrogen (N)-limited agricultural reservoirs and measured changes in diffusive GHG emissions within a before-after-control-impact (BACI) study design during June to September 2021. Each gas exhibited a unique response to 300% increases in primary production, with a shift from an overall CO2 source to a sink, a modest increase in N2O flux, and, unexpectedly, no significant change in CH4 emissions. The lack of net directional change in CO2-equivalent GHG emissions in fertilized reservoirs during the summer contrasts findings from empirical studies of eutrophic lakes. Our findings illustrate the difficulty in extrapolating among different sized ecosystems and suggest that forecast 2-fold increases in agricultural N fertilization by 2050 may not result in consistently elevated GHG emissions during summer, at least from small reservoirs in continental grassland regions.

5.
J Water Health ; 22(3): 522-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557568

RESUMO

The decline in the quality of water resources in the Amazon is very rapid in cities suffering from unplanned urban growth. The region has two defined seasons, winter (wet) and summer (dry), which directly affect the behavior of contaminants in aquatic ecosystems. The aim of this study was to assess the ecological and human health risks associated with the use of the watershed. In addition, an ecological index was proposed: the Quality Index for Aquatic Life, for the risk of contaminants to aquatic life. Sampling was carried out at six points in the Juá watershed. Physicochemical parameters, major anions, metals and total phosphorus were analyzed at both stations between 2020 and 2021. The highest concentrations of contaminants were found in the rainy season, due to the washing away of the banks. In this sense, Cl presented a concentration more than 307 times higher than that permitted by Brazilian legislation (wet). The ecological index showed that the watershed has a high risk of metals such as Cr III and Cr VI for the biota. The human health risk analysis showed a low risk; however, the lack of basic sanitation in the city indicates that monitoring of urban water resources is necessary.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Qualidade da Água , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise , Medição de Risco , Metais Pesados/análise , Rios , China
6.
Bull Environ Contam Toxicol ; 112(4): 55, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565721

RESUMO

In August 2021, the Mar Menor, a saltwater lagoon located in the Region of Murcia (Spain), suffered a tragic environmental episode of dystrophic crisis and anoxia. The appearance of numerous dead fish in different areas of the lagoon over the course of days put all the authorities and the population of the area on alert. This paper shows a case study of what happened in the lagoon in terms of the presence of the most common inorganic pollutants. Measurements of the concentration of nitrogen species, phosphates and main heavy metals were carried out at different sampling sites in the Mar Menor from May 2021 to November 2022. Chemical analyses were carried out for each of the species under study. These analyses provide valuable information about the dystrophic crisis caused by a classic eutrophication process that began with the excessive nutrient input into the Mar Menor. Ion chromatography and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used as instrumentation for the quantification of these samples. The species whose values were greatly increased after the tragic episode described above were nitrates. The concentration varied significantly at the different sampling sites throughout the study. On the last sampling date, decreased concentrations of all the species were measured at each of the sampling sites, coinciding with the apparent good state of the lagoon.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Nitratos/análise , Espanha
7.
Artigo em Inglês | MEDLINE | ID: mdl-38662293

RESUMO

The precise assessment of a water body's eutrophication status is essential for making informed decisions in water environment management. However, conventional approaches frequently fail to consider the randomness, fuzziness, and inherent hidden information of water quality indicators. These would result in an unreliable assessment. An enhanced method was proposed for the eutrophication assessment under uncertainty in this study. The multi-dimension gaussian cloud distribution was introduced to capture the randomness and fuzziness. The Shannon entropy based on various sample size and trophic levels was proposed to maximize valuable information hidden in the datasets. Twenty-seven significant lakes and reservoirs located in the Yangtze River Basin were selected to demonstrate the proposed method. The sensitivity and consistency were used to evaluate the accuracy of the proposed method. Results indicate that the proposed method has the capability to effectively assess the eutrophication status of lakes and reservoirs under uncertainty and that it has a better sensitivity since it can identify more than 33-50% trophic levels compared to the traditional methods. Further scenario experiments analysis revealed that the sample information richness, i.e., sample size and the number of trophic levels is of great significance to the accuracy/robustness of the method. Moreover, a sample size of 60 can offer the most favorable balance between accuracy/robustness and the monitoring expenses. These findings are crucial to optimizing the eutrophication assessment.

8.
J Hazard Mater ; 470: 134281, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626680

RESUMO

Eutrophication has led to the widespread occurrence of cyanobacterial blooms. Toxic cyanobacterial blooms with high concentrations of microcystins (MCs) have been identified in the Lalla Takerkoust reservoir in Morocco. The objective of this study was to evaluate the efficiency of the Multi-Soil-Layering (MSL) ecotechnology in removing natural cyanobacterial blooms from the lake. Two MSL pilots were used in rectangular glass tanks (60 × 10 × 70 cm). They consisted of permeable layers (PLs) made of pozzolan and a soil mixture layer (SML) containing local soil, ferrous metal, charcoal and sawdust. The main difference between the two systems was the type of local soil used: sandy soil for MSL1 and clayey soil for MSL2. Both MSL pilots effectively reduced cyanobacterial cell concentrations in the treated water to very low levels (0.09 and 0.001 cells/mL). MSL1 showed a gradual improvement in MC removal from 52 % to 99 %, while MSL2 started higher at 90 % but dropped to 54% before reaching 86%. Both MSL systems significantly reduced organic matter levels (97.2 % for MSL1 and 95.8 % for MSL2). Both MSLs were shown to be effective in removing cyanobacteria, MCs, and organic matter with comparable performance.


Assuntos
Cianobactérias , Eutrofização , Lagos , Microcistinas , Solo , Lagos/microbiologia , Cianobactérias/crescimento & desenvolvimento , Microcistinas/análise , Solo/química , Purificação da Água/métodos , Recuperação e Remediação Ambiental/métodos , Marrocos
9.
Front Microbiol ; 15: 1310374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628870

RESUMO

Eutrophication due to nutrient addition can result in major alterations in aquatic ecosystem productivity. Foundation species, individually and interactively, whether present as invasive species or as instruments of ecosystem management and restoration, can have unwanted effects like stabilizing turbid eutrophic states. In this study, we used whole-pond experimental manipulations to investigate the impacts of disturbance by nutrient additions in the presence and absence of two foundation species: Dreissena polymorpha (a freshwater mussel) and Myriophyllum spicatum (a macrophyte). We tracked how nutrient additions to ponds changed the prokaryotic and eukaryotic communities, using 16S, 18S, and COI amplicon sequencing. The nutrient disturbance and foundation species imposed strong selection on the prokaryotic communities, but not on the microbial eukaryotic communities. The prokaryotic communities changed increasingly over time as the nutrient disturbance intensified. Post-disturbance, the foundation species stabilized the prokaryotic communities as observed by the reduced rate of change in community composition. Our analysis suggests that prokaryotic community change contributed both directly and indirectly to major changes in ecosystem properties, including pH and dissolved oxygen. Our work shows that nutrient disturbance and foundation species strongly affect the prokaryotic community composition and stability, and that the presence of foundation species can, in some cases, promote the emergence and persistence of a turbid eutrophic ecosystem state.

10.
Environ Pollut ; 349: 123964, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631445

RESUMO

The knowledge of major sources, sinks, and the burial fate of various pollutants added to modern aquatic ecosystems under changing environmental conditions is limited but crucial for our sustainability. In this context, the spatial distributions and causative factors of organic matter (OM) and heavy metal accumulations have been explored in modern lacustrine sediments of a large urbanized and protected wetland (ULB: Upper Lake Bhopal) in Central India. For this purpose, geochemical properties, in particular, stable isotopes (δ13C and δ15N) were measured in the ULB surficial sediments (core depth ∼0-1 cm; n = 19), and additionally collected riverbed sediments (n = 2) and atmospheric free-fall dust samples (n = 3) from the lake periphery. The major and trace element data indicate widespread mafic sediment provenance and nearly dysoxic lacustrine conditions. The riverine supply of soil OM from cropped lands and the lake productivity (algae, largely sustained by nutrients from sewage and agricultural runoff) are the major OM sources to the western and eastern lake portions, respectively. The fractional contribution from autochthonous TOC (∼0.19-0.95, mean ∼0.62) predominates that of allochthonous TOC (∼0.05-0.81, mean ∼0.38). Whereas, atmospheric dust deposition is a primary anthropogenic source of heavy metals (Pb and Zn). The lake productivity rather than soil OM or any mineral sorbent is found responsible for the anthropogenic enrichments of Pb and Zn in the ULB surficial sediments, especially on the eastern ULB portion under high anthropogenic pressure. Therefore, the settled OM (primarily autochthonous) being oxidizable acts as a temporary but major sink of anthropogenic heavy metals in modern lacustrine sediments, which are vulnerable to heavy metal efflux to the water column by sediment diagenesis.

11.
Sci Total Environ ; 927: 172194, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575038

RESUMO

Aquaculture ponds (APs) are rapidly expanding globally and are considered crucial for guaranteeing the supply of food, population growth, and economic development. However, the rapid expansion of aquaculture not only brought benefits but also a series of eco-environmental issues, such as water eutrophication. To achieve sustainable development, it is essential to gain a profound understanding of the spatiotemporal evolution of APs, the drivers behind their dynamics, and their relationship with the aquatic environment. Jiangsu Province (JS) in China, a historically significant aquaculture region, encompasses two prominent river basins: the Huai River Basin (HRB) and the Yangtze River Basin (YRB). In light of the construction of an ecological civilization, JS serves as a demonstration and pioneering area for basin protection and development. Therefore, this study focuses on JS, aiming to elucidate the spatiotemporal dynamics of APs, the corresponding relationship with basin management policies, and the impact on water eutrophication. The results revealed that: (1) in 2022, APs in JS were unevenly distributed, with a total area of 3278.78 km2, of which 79 % was located in the HRB. (2) During 2016-2022, APs exhibited an initial growth trend before 2019, followed by a decrease. (3) Due to policy interventions, AP changes within different basins showed opposite trends, and the corresponding water eutrophic state aligned with AP dynamics. The findings of this study can serve as a typical case to provide scientific evidence for the formulation and implementation of policies to improve the water environment in eutrophic basins.

12.
J Hazard Mater ; 470: 134225, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583204

RESUMO

The lake eutrophication is highly variable in both time and location, and greatly restricts the sustainable development of water resources. The lack of national eutrophication evaluation for multi-scale lakes limits the pertinent governance and sustainable management of water quality. In this study, a remote sensing approach was developed to capture 40-year dynamics of trophic state index (TSI) for nationwide lakes in China. 32% of lakes (N = 1925) in China were eutrophic and 26% were oligotrophic, and a longitudinal pattern was discovered, with the 40-year average TSI of 62.26 in the eastern plain compared to 23.72 in the Tibetan Plateau. A decreasing trend was further observed in the past four decades with a correlation of -0.16, which was mainly discovered in the Tibetan Plateau lakes (r > -0.90, p < 0.01). The contribution of climate change and human activities was quantified and varied between lake zones, with anthropogenic factors playing a dominant role in the east plain lakes (88%, N = 473) and large lakes are subject to a more complex driving mechanism (≥ 3 driving factors). The study expands the spatiotemporal scale for eutrophication monitoring and provides an important base for strengthening lake management and ecological services.

13.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644013

RESUMO

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Assuntos
Mudança Climática , Monitoramento Ambiental , Eutrofização , Nitrogênio , Fósforo , Rios , Temperatura , Poluentes Químicos da Água , Fósforo/análise , Nitrogênio/análise , Rios/química , Itália , Poluentes Químicos da Água/análise , Estações do Ano
14.
J Fish Biol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594227

RESUMO

Growth is one of the most direct and common ways fish respond to climate change, as fish growth is intimately linked to the temperature of the environment. Observational studies on the effect of shifts in temperature on fish growth are scarce for freshwater fish, and particularly lacking for lake populations. Here, changes in growth rate of bream (Abramis brama), perch (Perca fluviatilis), pikeperch (Sander lucioperca), and roach (Rutilus rutilus) over three decades were studied and compared with changes in temperature in the two largest lakes of western Europe: Lake IJsselmeer and Lake Markermeer in the Netherlands. In the autumnal survey catches of bream, perch, and roach, the mean length of YOY increased significantly between 1992 and 2021 in both lakes, but for YOY pikeperch, no temporal changes were found. In a length-stratified dataset of age groups of bream, roach, and perch, the relationship between length and age differed significantly between time periods. In the more recent time periods, indications for higher growth rates across multiple ages were found. Temperature during the growth season increased in the same decades and showed significant correlations with the YOY mean length, for bream, perch, and roach in both lakes, and for pikeperch in Lake Markermeer. These results point toward consistent temperature-induced increases in growth over the age groups for bream, roach, and perch. These increases were found despite the simultaneous process of de-eutrophication in this water system and its potential negative effect on food production. For pikeperch, it is hypothesized that the absence of temporal increase in YOY growth rate is related to its necessary switch to piscivory and subsequent food limitation; the lower thermal range of its main prey smelt, Osmerus eperlanus, is hypothesized to have inhibited food availability for YOY pikeperch and its opportunity to achieve higher growth rates.

15.
Water Res ; 256: 121547, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583334

RESUMO

This study analyses over a decade (2009-2022) of monitoring data to understand the impact of hydrological characteristics on water quality and phytoplankton dynamics in Prospect Reservoir, a critical water supply for Greater Sydney, Australia, known for its excellent water quality. Water quality and phytoplankton dynamics were related to hydrodynamics, linked to flow management and the water quality of inflows. Phytoplankton biovolume increased after a prolonged drawdown and subsequent refill event, mainly driven by dinoflagellates, and corresponded to increases in total phosphorus and water temperature. The hydrological period following the 2019/2020 summer bushfires (post-bushfire) that impacted connected reservoirs, was marked by increased flow activity and nutrient loading, leading to significant shifts in the phytoplankton community. Functional group classification and ordination analysis indicated a transition from taxa typically dominant in oligotrophic conditions to meso­eutrophic. This transition correlated with elevated nutrient levels and chlorophyll-a (Chl-a), and reduced Secchi depth and dissolved oxygen, providing evidence of eutrophication. Q index indicated good water quality post-bushfire, contrasting with a eutrophic status assessment using Chl-a. Our findings highlight the importance of analysing long-term datasets encompassing varied hydroclimatological conditions for a deeper understanding of reservoir behaviour. A comprehensive approach to water quality assessment is recommended, combining functional group classification, Q index and Chl-a measurements for effective reservoir health assessment. This research provides novel insights into the effects of disturbances such as bushfires, on water quality and phytoplankton dynamics in an underrepresented geographic region, offering valuable knowledge for managing water resources amidst growing climate variability.

16.
Water Res ; 256: 121575, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636121

RESUMO

According to stoichiometric homeostasis theory, eutrophication is expected to increase the dominance of submerged macrophytes with low homeostatic regulation coefficients (H) relative to those with high H values, ultimately reducing macrophyte community stability. However, empirical evidence supporting this hypothesis is limited. In this study, we conducted a three-year tracking survey (seven sampling events) at 81 locations across three regions of Erhai Lake. We assessed the H values of submerged macrophyte species, revealing significant H values for phosphorus (P) and strong associations of HP values (range: 1.58-2.94) with species and community stability. Moreover, in plots simultaneously containing the dominant high-HP species, Potamogeton maackianus, and its low-HP counterpart, Ceratophyllum demersum, we explored the relationships among eutrophication, interspecific interaction shifts, and community dynamics. As the environmental P concentration increased, the dominance of P. maackianus decreased, while that of C. demersum increased. This shift coincided with reductions in community HP and stability. Our study underpins the effectiveness of H values for forecasting interspecific interactions among submerged macrophytes, thereby clarifying how eutrophication contributes to the decline in stability of the submerged macrophyte community.

17.
Front Bioeng Biotechnol ; 12: 1364490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425996

RESUMO

A natural appearing microalgae-bacteria consortium was used to process urban wastewater. The process was done in an 80 m2 raceway reactor and the results were compared to an identical reactor operated using freshwater supplemented with commercial fertilisers. The biomass harvesting was done using commercial ultrafiltration membranes to reduce the volume of culture centrifuged. The membrane allowed achieving a biomass concentration of ∼9-10 g L-1. The process proposed avoids the use of centrifuges and the drying of the biomass, two of the most energy consuming steps of conventional processes. The specific growth rate in freshwater and the wastewater-based media was estimated as 0.30 ± 0.05 and 0.24 ± 0.02 days-1, respectively (p < 0.05). The maximum concentration reached at the end of the batch phase was 0.96 ± 0.03 and 0.83 ± 0.07 g L-1 when the biomass was produced using freshwater and wastewater, respectively (p < 0.05). The total nitrogen removal capacity of the system was on average 1.35 g m-2·day-1; nitrogen assimilation into biomass represented 60%-95% of this value. Furthermore, the P-PO4 3- removal capacity of the system varied from 0.15 to 0.68 g m-2·day-1. The outlet effluent of the reactor was used as a nutrient source in the hydroponic production of zucchini seedlings, leading to an increase in the root dry weight and the stem diameter compared to the water alone. The produced biomass showed potential for use as feedstock to produce plant biostimulants with positive effects on root development and chlorophyll retention.

18.
Ecol Evol ; 14(3): e11136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469038

RESUMO

Wetland habitats are changing under multiple anthropogenic pressures. Nutrient leakage and pollution modify physico-chemical state of wetlands and affect the ecosystem through bottom-up processes, while alien predators affect the ecosystems in a top-down manner. Boreal wetlands are important breeding areas for several waterbird species, the abundances of which potentially reflect both bottom-up and top-down ecosystem processes. Here, we use long-term national monitoring data gathered from c. 130 waterbird breeding sites in Finland from the 1980s to the 2020s. We hypothesised that the physico-chemical state of the waters and increasing alien predator abundance both play a role in steering the waterbird population trends. We set out to test this hypothesis by relating population changes of 17 waterbird species to changes in water chemistry and to regional alien predator indices while allowing species-specific effects to vary with foraging niche (dabblers, invertivore divers, piscivorous divers, herbivores), nesting site, female mass and habitat (oligotrophic, eutrophic). We found niche and nesting site-specific, habitat-dependent changes in waterbird numbers. While the associations with higher phosphorus levels and browning water were in overall positive at the oligotrophic lakes, the numbers of invertivore and piscivore diving ducks were most strongly negatively associated with higher phosphorus levels and browning water at the eutrophic lakes. Furthermore, increased pH levels benefitted piscivores. Invertivore diving duck species nesting on the wetlands had declined most on sites with high alien predator indices. Large herbivorous species and species preferring oligotrophic lakes seem to be successful. We conclude that the large-scale breeding waterbird decline in Finland is closely connected to both bottom-up and top-down processes, where negative associations are emphasised especially at eutrophic lakes. Niche-, nest site- and habitat-specific management actions are required to conserve declining waterbird populations. Managing wetlands on catchments level together with alien predator control may provide important approaches to future wetland management.

19.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474517

RESUMO

Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Águas Residuárias , Adsorção , Nitrogênio/química , Ecossistema , Carvão Vegetal/química , Água , Poluentes Químicos da Água/química
20.
Water Res ; 255: 121487, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518414

RESUMO

Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...